BI 4.1 Internet - Web Server
Quick launch into Flask, sending and receiving data from a web server.
- Introduction
- Our Goals for Today
- Hello, World!
- Hacks
Introduction
Welcome to this journey into the world of web servers and the Flask framework! In the previous weeks, you’ve successfully set up a web server using GitHub Pages, converting Jupyter Notebooks into Markdown for a seamless online presentation. Today, we’ll take that knowledge to the next level as we dive into creating your very own web server using Flask.
Understanding Web Servers
What is a Web Server?
Traditionally, we had librarians at libraries that would help you find books or information. Today in the digital world, thousands upon thousands of home pages, search engines, and digital archives have been built using web servers.
GitHub Pages vs. Flask
You’ve already experienced a form of web server through GitHub Pages. Think of GitHub Pages as a library that has established rules for publishing Markdown notes and Jupyter Notebooks neatly on a bookshelf.
Now, let’s introduce Flask, your personal web server. Flask can create and manage any type of content, including customizing everything according to your preferences, and even serve additional information (like a database with APIs).
The Flask Framework Flask is a micro web framework written in Python. It’s designed to be minimal and easy to use, making it perfect for building web applications, APIs, and, yes, even your web server. Today, we will start with the basics of Flask and see how it empowers you to create and manage web content.
Our Goals for Today
Here’s what we’ll accomplish in this session:
- Create a minimal Flask server.
- Explore the Python/Flask process.
- Access data from our Flask server using Python.
- Access data from our Flask server using JavaScript.
- Learn how to stop the Python/Flask process gracefully.
Install required libraries
These libraries are required to run and interact with the Python web server.
!pip install flask flask-cors requests
Requirement already satisfied: flask in /home/kasm-user/nighthawk/IanM_2025/.venv/lib/python3.10/site-packages (3.1.0)
Requirement already satisfied: flask-cors in /home/kasm-user/nighthawk/IanM_2025/.venv/lib/python3.10/site-packages (5.0.0)
Requirement already satisfied: requests in /home/kasm-user/nighthawk/IanM_2025/.venv/lib/python3.10/site-packages (2.32.3)
Requirement already satisfied: Werkzeug>=3.1 in /home/kasm-user/nighthawk/IanM_2025/.venv/lib/python3.10/site-packages (from flask) (3.1.3)
Requirement already satisfied: Jinja2>=3.1.2 in /home/kasm-user/nighthawk/IanM_2025/.venv/lib/python3.10/site-packages (from flask) (3.1.4)
Requirement already satisfied: itsdangerous>=2.2 in /home/kasm-user/nighthawk/IanM_2025/.venv/lib/python3.10/site-packages (from flask) (2.2.0)
Requirement already satisfied: click>=8.1.3 in /home/kasm-user/nighthawk/IanM_2025/.venv/lib/python3.10/site-packages (from flask) (8.1.7)
Requirement already satisfied: blinker>=1.9 in /home/kasm-user/nighthawk/IanM_2025/.venv/lib/python3.10/site-packages (from flask) (1.9.0)
Requirement already satisfied: charset-normalizer<4,>=2 in /home/kasm-user/nighthawk/IanM_2025/.venv/lib/python3.10/site-packages (from requests) (3.4.0)
Requirement already satisfied: idna<4,>=2.5 in /home/kasm-user/nighthawk/IanM_2025/.venv/lib/python3.10/site-packages (from requests) (3.10)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/kasm-user/nighthawk/IanM_2025/.venv/lib/python3.10/site-packages (from requests) (2.2.3)
Requirement already satisfied: certifi>=2017.4.17 in /home/kasm-user/nighthawk/IanM_2025/.venv/lib/python3.10/site-packages (from requests) (2024.8.30)
Requirement already satisfied: MarkupSafe>=2.0 in /home/kasm-user/nighthawk/IanM_2025/.venv/lib/python3.10/site-packages (from Jinja2>=3.1.2->flask) (3.0.2)
Start Web Server
This Python code provides a simple server with an accessible API.
Note: Jupyter magic commmand %%python --bg
that follows runs the server in background. This enables us to continue interacting with the subsequent Notebook cells.
%%python --bg
from flask import Flask, jsonify
from flask_cors import CORS
# initialize a flask application (app)
app = Flask(__name__)
CORS(app, supports_credentials=True, origins='*') # Allow all origins (*)
# ... your existing Flask
# add an api endpoint to flask app (PUT THIS INTO THE API DIRECTORY)
@app.route('/api/data')
def get_data():
# start a list, to be used like a information database
InfoDb = []
# add a row to list, an Info record
InfoDb.append({
"FirstName": "John",
"LastName": "Mortensen",
"DOB": "October 21",
"Residence": "San Diego",
"Email": "jmortensen@powayusd.com",
"Owns_Cars": ["2015-Fusion", "2011-Ranger", "2003-Excursion", "1997-F350", "1969-Cadillac"]
})
# add a row to list, an Info record
InfoDb.append({
"FirstName": "Shane",
"LastName": "Lopez",
"DOB": "February 27",
"Residence": "San Diego",
"Email": "slopez@powayusd.com",
"Owns_Cars": ["2021-Insight"]
})
return jsonify(InfoDb)
# add an HTML endpoint to flask app
@app.route('/')
def say_hello():
html_content = """
<html>
<head>
<title>Hellox</title>
</head>
<body>
<h2>Hello, World!</h2>
</body>
</html>
"""
return html_content
if __name__ == '__main__':
# starts flask server on default port, http://127.0.0.1:5001
app.run(port=5001)
Explore the Python/Flask process with Linux
This script discovers the running flask process on your machine using Linux commands.
- lsof - list open files
lsof
andawk
return the process id, sops
can list details, the vericle bar is called apipe
. A pipe flows output from one command to the next.curl
is a Linux utiltity that is easiest way to test if web server is responding
%%script bash
# After app.run(), see the the Python open files on port 5001
echo "Python open files on port 5001"
lsof -i :5001
# see the the Python process
echo
echo "Python process"
lsof -i :5001 | awk '/Python/ {print $2}' | xargs ps
# show ontent of the Python server using curl
echo
echo "Content of the Python root endpoint (aka /), using curl",
curl http://localhost:5001/
Python open files on port 5001
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
python 26373 kasm-user 3u IPv4 266965 0t0 TCP localhost:5001 (LISTEN)
Python process
PID TTY TIME CMD
1 ? 00:00:00 vnc_startup.sh
4185 ? 00:03:35 Xvnc
4204 ? 00:00:00 xfce4-session
4205 ? 00:00:17 kasm_audio_out-
4217 ? 00:00:14 pulseaudio
4233 ? 00:00:42 ffmpeg
4234 ? 00:00:00 kasm_audio_inpu
4235 ? 00:00:00 kasm_upload_ser
4237 ? 00:00:00 kasm_printer_se
4238 ? 00:00:00 tail
4243 ? 00:00:00 dbus-launch
4245 ? 00:00:00 dbus-daemon
4262 ? 00:00:00 at-spi-bus-laun
4267 ? 00:00:00 dbus-daemon
4271 ? 00:00:00 xfconfd
4277 ? 00:00:00 at-spi2-registr
4285 ? 00:00:00 ssh-agent
4290 ? 00:00:00 gpg-agent
4291 ? 00:00:01 xfwm4
4295 ? 00:00:00 kasm_printer_se
4296 ? 00:00:00 gvfsd
4308 ? 00:00:00 kasm_audio_inpu
4311 ? 00:00:00 kasm_printer_se
4319 ? 00:00:00 xfsettingsd
4324 ? 00:00:00 kasm_audio_inpu
4326 ? 00:00:00 kasm_upload_ser
4330 ? 00:00:02 xfce4-panel
4337 ? 00:00:00 execThunar.sh
4343 ? 00:00:02 Thunar
4348 ? 00:00:01 kasm_upload_ser
4351 ? 00:00:03 xfdesktop
4354 ? 00:00:00 panel-2-systray
4365 ? 00:00:00 xiccd
4373 ? 00:00:00 xfce4-notifyd
4389 ? 00:00:00 gvfsd-metadata
4496 ? 00:00:00 gvfs-udisks2-vo
4647 ? 00:00:00 xdg-desktop-por
4660 ? 00:00:00 xdg-permission-
4670 ? 00:00:00 xdg-desktop-por
4679 ? 00:00:00 gnome-keyring-d
6831 ? 00:00:00 gvfsd-trash
6845 ? 00:00:00 dconf-service
7781 ? 00:00:00 gvfsd-computer
7898 ? 00:01:07 code
7900 ? 00:00:00 code
7901 ? 00:00:00 code
7921 ? 00:00:00 chrome_crashpad
7938 ? 00:00:05 code
7960 ? 00:09:57 code
7983 ? 00:03:05 code
7999 ? 00:00:59 code
8149 ? 00:00:19 code
11557 ? 00:00:43 code
21944 ? 00:00:10 java
25278 ? 00:00:38 code
25300 ? 00:00:00 pet
25301 ? 00:00:00 code
25302 ? 00:00:04 code
25470 ? 00:00:00 code
25519 ? 00:00:16 code
25677 ? 00:00:00 code
26095 ? 00:00:05 code
26211 ? 00:00:02 python
26270 ? 00:00:00 code
26373 ? 00:00:00 python
26950 ? 00:00:00 bash
26954 ? 00:00:00 sleep
26957 ? 00:00:00 xargs
26964 ? 00:00:00 ps
Content of the Python root endpoint (aka /), using curl,
<html>
<head>
<title>Hellox</title>
</head>
<body>
<h2>Hello, World!</h2>
</body>
</html>
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 135 100 135 0 0 56698 0 --:--:-- --:--:-- --:--:-- 131k
Access data from our Flask server using Python
The code block below shows alternate ways to access the Web Server.
- Import requests and use it to obtain response from endpoints
- The response is a Python object that contains status codes and data
- The data can be in different forms, we will be focussed on JSON responses in Full-Stack.
import requests
from IPython.display import HTML, display
# call api root endpoint (aka '/'), often called home page
response = requests.get('http://127.0.0.1:5001/')
# output response in different forms
print("Print Status Message:", response)
print("\nPrint Raw HTML:\n", response.text)
display(HTML(response.text))
# call unknown api endpoint
response = requests.get('http://127.0.0.1:5001/unknown-page')
print("Print Status Message:", response)
Print Status Message: <Response [200]>
Print Raw HTML:
<html>
<head>
<title>Hellox</title>
</head>
<body>
<h2>Hello, World!</h2>
</body>
</html>
Hello, World!
Print Status Message: <Response [404]>
import requests
# an api endpoint most commonly returns JSON data
response = requests.get('http://127.0.0.1:5001/api/data')
response.json()
[{'DOB': 'October 21',
'Email': 'jmortensen@powayusd.com',
'FirstName': 'John',
'LastName': 'Mortensen',
'Owns_Cars': ['2015-Fusion',
'2011-Ranger',
'2003-Excursion',
'1997-F350',
'1969-Cadillac'],
'Residence': 'San Diego'},
{'DOB': 'February 27',
'Email': 'slopez@powayusd.com',
'FirstName': 'Shane',
'LastName': 'Lopez',
'Owns_Cars': ['2021-Insight'],
'Residence': 'San Diego'}]
Access data from our Flask server using JavaScript
This sample is very similar to Full-Stack as the JavaScript is running through Jupyter and the Web server is a Python Process running on our machine (local server).
- HTML is used to setup basics of a table
- The script block, has javascript fetch that passes endpoint (url) and options. The options are critical to communicating request requirements.
- Similar to python examples, data is extracted and that data is written to the document, which is what is viewable to the user as the page is rendered. Headings are static in the document, but rows are dynamically extracted according to the information contained in the server.
%%html
<h1>Access data from our Flask server using JavaScript</h1>
<p>This code extracts data "live" from a local Web Server with JavaScript fetch. Additionally, it formats the data into a table.</p>
<!-- Head contains information to Support the Document -->
<!-- HTML table fragment for page -->
<table id="demo" class="table">
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Residence</th>
</tr>
</thead>
<tbody id="result">
<!-- javascript generated data -->
</tbody>
</table>
<script>
// prepare HTML result container for new output
let resultContainer = document.getElementById("result");
// prepare URL
url = "http://127.0.0.1:5001/api/data";
// set options for cross origin header request
let options = {
method: 'GET', // *GET, POST, PUT, DELETE, etc.
mode: 'cors', // no-cors, *cors, same-origin
cache: 'default', // *default, no-cache, reload, force-cache, only-if-cached
credentials: 'include', // include, *same-origin, omit
headers: {
'Content-Type': 'application/json',
},
};
// fetch the API
fetch(url, options)
// response is a RESTful "promise" on any successful fetch
.then(response => {
// check for response errors and display
if (response.status !== 200) {
console.error(response.status);
return;
}
// valid response will contain json data
response.json().then(data => {
console.log(data);
for (const row of data) {
// tr and td build out for each row
const tr = document.createElement("tr");
const firstname = document.createElement("td");
const lastname = document.createElement("td");
const residence = document.createElement("td");
// data is specific to the API
firstname.innerHTML = row.FirstName;
lastname.innerHTML = row.LastName;
residence.innerHTML = row.Residence;
// this builds each td into tr
tr.appendChild(firstname);
tr.appendChild(lastname);
tr.appendChild(residence);
// add HTML to container
resultContainer.appendChild(tr);
}
})
})
</script>
Access data from our Flask server using JavaScript
This code extracts data "live" from a local Web Server with JavaScript fetch. Additionally, it formats the data into a table.
First Name | Last Name | Residence |
---|
Stop the Python/Flask process
This script ends Python/Flask process using pipes to obtain the python process. Then echo the python process to kill -9
.
%%script bash
python_ps=$(lsof -i :5001 | awk '/Python/ {print $2}')
echo "Killing python process with PID: $python_ps"
echo $python_ps | xargs kill -9
Killing python process with PID:
Usage:
kill [options] <pid> [...]
Options:
<pid> [...] send signal to every <pid> listed
-<signal>, -s, --signal <signal>
specify the <signal> to be sent
-q, --queue <value> integer value to be sent with the signal
-l, --list=[<signal>] list all signal names, or convert one to a name
-L, --table list all signal names in a nice table
-h, --help display this help and exit
-V, --version output version information and exit
For more details see kill(1).
---------------------------------------------------------------------------
CalledProcessError Traceback (most recent call last)
Cell In[13], line 1
----> 1 get_ipython().run_cell_magic('script', 'bash', '\npython_ps=$(lsof -i :5001 | awk \'/Python/ {print $2}\')\necho "Killing python process with PID: $python_ps"\necho $python_ps | xargs kill -9\n')
File ~/nighthawk/IanM_2025/.venv/lib/python3.10/site-packages/IPython/core/interactiveshell.py:2541, in InteractiveShell.run_cell_magic(self, magic_name, line, cell)
2539 with self.builtin_trap:
2540 args = (magic_arg_s, cell)
-> 2541 result = fn(*args, **kwargs)
2543 # The code below prevents the output from being displayed
2544 # when using magics with decorator @output_can_be_silenced
2545 # when the last Python token in the expression is a ';'.
2546 if getattr(fn, magic.MAGIC_OUTPUT_CAN_BE_SILENCED, False):
File ~/nighthawk/IanM_2025/.venv/lib/python3.10/site-packages/IPython/core/magics/script.py:315, in ScriptMagics.shebang(self, line, cell)
310 if args.raise_error and p.returncode != 0:
311 # If we get here and p.returncode is still None, we must have
312 # killed it but not yet seen its return code. We don't wait for it,
313 # in case it's stuck in uninterruptible sleep. -9 = SIGKILL
314 rc = p.returncode or -9
--> 315 raise CalledProcessError(rc, cell)
CalledProcessError: Command 'b'\npython_ps=$(lsof -i :5001 | awk \'/Python/ {print $2}\')\necho "Killing python process with PID: $python_ps"\necho $python_ps | xargs kill -9\n'' returned non-zero exit status 123.
Hacks
Edit, stop and start the web server.
- Add to the Home Page
- Add your own information to the Web API
- Use from Template to start your own Team Flask project https://github.com/nighthawkcoders/flocker_backend